On semiabelian p-groups
نویسندگان
چکیده
منابع مشابه
On Semiabelian Groups
Recall that a group is called semiabelian if it is generated by its normal cyclic subgroups [6]. The class of semiabelian groups is a very natural generalization of the wellknown class of Dedekind groups (the groups in which all cyclic subgroups are normal). In the paper [6] Venzke showed that these groups could play a major role in the theory of supersoluble finite groups. Based on the notion ...
متن کاملOn Semiabelian π-Regular Rings
A ring R is defined to be semiabelian if every idempotent of R is either right semicentral or left semicentral. It is proved that the set N(R) of nilpotent elements in a π-regular ring R is an ideal of R if and only if R/J(R) is abelian, where J(R) is the Jacobson radical of R. It follows that a semiabelian ring R is π-regular if and only if N(R) is an ideal of R and R/N(R) is regular, which ex...
متن کاملOn Sushchansky p-groups
We study Sushchansky p-groups introduced in [Sus79]. We recall the original definition and translate it into the language of automata groups. The original actions of Sushchansky groups on p-ary tree are not level-transitive and we describe their orbit trees. This allows us to simplify the definition and prove that these groups admit faithful level-transitive actions on the same tree. Certain br...
متن کاملON COMMUTATORS IN p-GROUPS
For a given prime p, what is the smallest integer n such that there exists a group of order p in which the set of commutators does not form a subgroup? In this paper we show that n = 6 for any odd prime and n = 7 for p = 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2011
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2011.07.016